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Abstract
The Born rule, a foundational axiomused to deduce probabilities of events fromwavefunctions, is
indispensable in the everyday practice of quantumphysics. It is also key in the quest to reconcile the
ostensibly inconsistent laws of the quantumand classical realms, as it confers physical significance to
reduced densitymatrices, the essential tools of decoherence theory. Following Bohr’s Copenhagen
interpretation, textbooks postulate the Born rule outright. However, recent attempts to derive it from
other quantumprinciples have been successful, holding promise for simplifying and clarifying the
quantum foundational bedrock. Amajor family of derivations is based on envariance, a recently
discovered symmetry of entangled quantum states. Here, we identify and experimentally test three
premises central to these envariance-based derivations, thus demonstrating, in themicroworld, the
symmetries fromwhich the Born rule is derived. Further, we demonstrate envariance in a purely local
quantum system, showing its independence from relativistic causality.

1. Introduction

For almost a century, we have understood theUniverse to obey the laws of quantummechanics atmicroscopic
scales [1, 2]. Quantummechanics is arguably themost successful physical theory ever developed. Its validity in
themicroscopic regime has been affirmed by decades of pointed and rigorous experimental testing. Almost
paradoxically, however, the laws of quantummechanics, naïvely interpreted, seem to prescribe behavior
incompatible with our day-to-day classical experience [3, 4].

Numerous quantummechanical phenomena appear to defy classical explanation, including, for example,
the existence of quantum state superpositions. Yet, the ostensible classicality of our familiarmacroscopic world
is undeniable: flagrant superpositions of classical states, such as that described by Erwin Schrödinger in his well-
known cat-in-a-box thought experiment [5], are simply never observed. Rather, our experience is one of
absolutes: we observe a light bulb to be on or off, but certainly not on and off simultaneously, for example.

The Born rule establishes a connection between thewavefunction used to represent the state of a quantum
system (a purelymathematical object), and the probabilistic outcomes ofmeasurementsmade on that system
[6], as experienced by observers (the ‘physical reality’). For a pure (fully coherent) physical systemdescribed by a
wavefunction yñ = å ñc nn n∣ ∣ , where ñn∣ is a ‘classically observable’ state the Born rule states that the
probability of witnessing ameasurement outcome ñn∣ is given by cn

2∣ ∣ .Moreover, the Born rule justifies
averaging over (‘tracing out’) the environment, thereby validating the statistical interpretation of the reduced
densitymatrices used to study decoherence. Therefore, it plays a central role in the theory of decoherence, which
accounts for the emergence of classical behavior fromquantum substrates [3].While one could adopt the Born
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rule as an axiom, following theCopenhagen interpretation andmost textbooks, a physically transparent
derivationwould contribute greatly to clarifying the foundations of quantummechanics. Given its importance
to quantummechanics, and to decoherence theory in particular, a satisfactory explanation of the quantum-to-
classical transition depends upon one’s ability to derive the Born probability rule (BPR) from simpler quantum
mechanical principles.

Attempts to reason up to the Born rule in this way have historically frustrated physicists and philosophers in
equalmeasure7; indeed, the absence of universally satisfactory derivations of the BPRhas ledmore pragmatic
workers to resign themselves to outright postulation of the Born rule8. Such a position is tantamount to
abandoning any attempt to explain, on fundamental grounds, howquantum theorymight possibly correspond
to physical reality, and, as such, is an unpalatable option tomany.

Relatively recently, the BPRwas shown to arise as a consequence of certain properties, which are known to
arise from the entanglement of quantum states [8]. The central property, a symmetry known as envariance, has
been subjected to tests in its nonlocal form [9], but until now, there has been no experimental substantiation of
the other premises underlying this theoretical argument for the BPR. In other words, we know that entangled
quantum states have symmetries that imply the Born rule, but we do not knowwhether physical systems indeed
respect these (often counterintuitive) symmetries. The situation is similar to the ‘EPR paradox’ andBell’s
theorem: its violationwas predicted by quantum theory, but experimental tests were needed to ascertain that
microsystems in ourUniverse really behave like this!

Here, we demonstrate experimentally the validity of three key premises required by this envariance-based
BPRderivation, and thereby show that themost controversial logical ‘ingredients’ of the proof are, in fact,
physically sound. In particular, we experimentally verify (1) that pure quantum states consisting of two
maximally entangled degrees of freedomare left unaltered by the action of successive ‘swapping’ operations,
each of which are carried out on a different (entangled) degree of freedom; (2) that these ‘swapping’ operations
cannot be noticed by observers having access to only one degree of freedompossessed by the overall quantum
state; and (3) that kets defined over differentHilbert spaces that are linked to one another via tensor product are
detected together uponmeasurement.We follow a variant of the original envariance argument to show that the
three propositions above lead to the conclusion that the Born rulemust hold in general. Further, sincewe
experimentally test these propositions both for fully local and fully nonlocal quantum states, we demonstrate the
key ingredients of the envariance argument in full generality, and allow the consequences of envariance to be
distinguished from those of nonlocality for the first time.

Wenote also that, prior to this study, the Born rule could only be tested for specific cases, rather than in its
general form: a test of the Born rule would necessarily entail the repeated generation andmeasurement of a
particular quantum state, and the comparison of the correspondingmeasurement statistics to the predictions
that onewould obtain from the Born rule. The approach presented here provides the firstmeans bywhich the
general validity of the Born rule can be verified from carrying out a series of well-defined experiments on a
particular quantum state. These experiments are designed so as to test premises fromwhich the BornRule can be
derived.

2. Theory

Any process of quantummeasurement necessarily involves an interaction between two ormore systems. That
this is true can be seen by considering that ameasurement, by definition, involves a transfer of information
between systems: systemS has been ‘measured’ only if there exists another system E, that carries information
about the state ofS. For this reason, any theory of quantummeasurementmust necessarily describe an
interaction betweenmultiple degrees of freedom,which can be said to ‘measure one another’.With these
preliminaries in place, we nowbegin by briefly reviewing the derivation of the Born rule, whichmotivates this
investigation, bearing inmind that the simple scenario discussed here is readily generalized to the case of
arbitrary quantum states (see: appendix A). In this approach, one considers a bipartite quantum state Sy ñE∣ ,
formed from an interaction between a systemS and its environment9 E, whoseHilbert spaces are respectively
spanned by the orthonormal kets ñs1{∣ , ñs2∣ }, and e ñ1{∣ , e ñ2∣ }. This process, often referred to as a pre-measurement,
takes the form

7
This is in spite of Gleason’s theorem [7]which is rigorous, but sheds essentially no light on the reasonwhy the uniquemeasure it yields

should play the role of probability in physics.
8
Foremost among those advancing thismore pragmatic perspective is DavidMermin, who famously said of the controversy surrounding

the Born rule that one should simply, ‘Shut up and calculate!’
9
In general, the environment E considered herewill stand for any ancillary quantum system that is coupled toS. E therefore plays the role

of a ‘pointer’ state, which registers the state ofS following a successfulmeasurement.
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Se e e yñ + ñ ñ  ñ ñ + ñ ñ = ñs s s s
1

2

1

2
. 1E1 2 1 1 1 2 2(∣ ∣ )∣ (∣ ∣ ∣ ∣ ) ∣ ( )

Wenote that the final state (1) is expressed in Schmidt form, so that each of its constituent system and
environment kets are orthonormal. Under these conditions, the Born rule predicts that an experiment carried
out on the state Sy ñE∣ will yield a result corresponding to the system state ñs1∣ with probability =1 2 1 22∣ ∣ ,
and a result corresponding to system state ñs2∣ with equal probability. But how can this be justified frommore
basic quantummechanical principles?

One can imagine applying a unitary operator, S S E= ÄU uˆ ˆ ˆ , which acts only on the system, and a second
unitary operator E S E= ÄU uˆ ˆ ˆ , which acts only on the environment, to the state Sy ñE∣ . Here, we take S̂ and E̂
to represent identity operators over the system and environment spaces, and Sû and Eû to represent nontrivial
operations respectively carried out over the system and environment spaces. It is argued that, if there exist
operators SÛ and EÛ , such that E S S S E S Sy y yñ = Ä ñ = ñU U u uE E E

ˆ ˆ ∣ ˆ ˆ ∣ ∣ , any propertiesmodified by SÛ ( EÛ )
cannot be ascribed to the system (environment) alone, since changes in these properties can be reversed by the
application of a unitary operator acting on a completely separate part of thewavefunction (in quantum
mechanical parlance, on a completely separateHilbert space). This implies that an observer having access to the
system (environment) alonewould be unable to detect any change in the state of the system either the
environment resulting from the application of SÛ or EÛ to the global state Sy ñE∣ . Any property affected by either

of these operators is defined as being envariant under SÛ and EÛ .
The argument proceeds by introducing the unitary ‘swapping’ operators S = ñá + ñáu s s s s1 2 2 1ˆ ∣ ∣ ∣ ∣and

E e e e e= ñá + ñáu 1 2 2 1ˆ ∣ ∣ ∣ ∣, which respectively cycle the state labels 1⟷ 2 of the system and environment. These
operators satisfy the envariance relation above, since S E S Sy yÄ ñ = ñu u E Eˆ ˆ ∣ ∣ . As a result, the properties affected
by Sû and Eû must be envariant, and cannot be attributed to either the systemor the environment alone.

Tomake the case for the BPR, we adopt the following notational convention: for an observer having access
only to theHilbert space towhich belongs a state ñx∣ (i.e., the systemor environment spaces), the probability that
state ñx∣ is observed uponmeasurement is given byP yñ ñx(∣ ∣∣ ), where yñ∣ is the full state of the entangled
system-environment. The Born rule can then be derived as follows [10, 11]:

(i) The swapped and counterswapped state E S Sy ñU U E
ˆ ˆ ∣ is mathematically identical to the initial state Sy ñE∣ .

The statesmust therefore be physically equivalent aswell, meaning that the statistics witnessed by observers
having access to the combined system and environment of the states Sy ñE∣ and E S Sy ñU U E

ˆ ˆ ∣ must be

indistinguishable (Premise I). Hence,P PS E S Sy yñ ñ = ñ ñs s U UE E1 1(∣ ∣∣ ) (∣ ∣ ˆ ˆ ∣ ).

(ii) Since the swapping operator EÛ acts only on the environment, it cannot affect the state of the system.
Consequently, the application of the swapping operator EÛ cannot affect the statistics witnessed by a ‘system-
only’ observer (Premise II). Hence,P PE S S S Sy yñ ñ = ñ ñs U U s UE E1 1(∣ ∣ ˆ ˆ ∣ ) (∣ ∣ ˆ ∣ ).

(iii) The system-swapped state, S Sy e eñ = ñ ñ + ñ ñU s s1 2E 2 1 1 2
ˆ ∣ (∣ ∣ ∣ ∣ ), directly links the states ñs1∣ and e ñ2∣ . Kets

appearing together in the Schmidt decomposition of the global statemust also appear together upon
measurement, and are hence10 ‘perfectly correlated’ (Premise III). There-
fore,P PS S S Sy e yñ ñ = ñ ñs U UE E1 2(∣ ∣ ˆ ∣ ) (∣ ∣ ˆ ∣ ).

(iv) By Premise II, a swapping operator acting on the system cannot affect the statistics of the environment, and
soP PS S Se y e yñ ñ = ñ ñU E E2 2(∣ ∣ ˆ ∣ ) (∣ ∣∣ ).

(v) Since e ñ2∣ is pairedwith ñs2∣ in Sy ñE∣ , it follows fromPremise III thatP PS Se y yñ ñ = ñ ñsE E2 2(∣ ∣∣ ) (∣ ∣∣ ).

Provided that the premises called upon by arguments 1–5 hold true, one concludes that
P PS Sy yñ ñ = ñ ñ =s s 1 2E E1 2(∣ ∣∣ ) (∣ ∣∣ ) , in agreementwith the Born rule for the particular state Sy ñE∣ . This
derivation is readily generalized to account for unequally weighted superpositions, as discussed in the
appendix A. A number of further approaches to explaining the Born rule have since been proposed, that depend
upon some or all of the Premises I–III introduced above, includingmost recently that of Carroll and Sebens [12].

It should be emphasized, however, that Premises I–III do not represent assumptions thatmust be added to
the set of basic foundational axioms uponwhich quantum theory is built. Rather, these premises can be deduced
frommore fundamental assumptions regarding the unitarity and linearity of time evolution in quantum
mechanics, the combination of quantum systems by tensor product, and so forth (see appendix B) [10]. Hence,
the existing body of theoretical work supporting the preceding derivation, alongwith any associated
experimental demonstrations of the validity of Premises I–III, ultimately serve to reduce the number of axioms

10
Here, the notion of perfect correlation is borrowed from [10], in which it is argued that, for a state of the form Sy ñE∣ , the detection of ñs1 2∣ ( )

implies that the furthermeasurement of any observable on Ewith Schmidt eigenstates will yield a result corresponding to e ñ1 2∣ ( ) , and that, as
a result, ‘partner states’ such as ñs1 2∣ ( ) and e ñ1 2∣ ( ) will be detected together with certainty (i.e. with probability 1).
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required to produce quantummechanics by eliminating the need for the Born rule postulate without
introducing additional complications to the theory.

In order to justify, and to confer physical validity to the condensed BPRderivation presented above, it is
necessary to subject Premises I–III to comprehensive experimental verification.We carried out such an
investigation using a bipartite quantum state in which the ‘system’ and ‘environment’were identifiedwith two
internal photonic degrees of freedom, namely the photon spin angularmomentum (SAM) and orbital angular
momentum (OAM).Wemade use ofOAMand SAM swapping operators, realized by different unitary optical
components, as shown infigure 1.

3. Experiment and results

Our investigation is divided into two experiments. In experiment 1, we generated an entangled photon pair by
spontaneous parametric down-conversion, and used a set of linear optics, including a photonic q-plate [13], to
produce a nonlocal state Sy ñE

NL∣ inwhich theOAMdegree of freedomof the signal s photonwas entangledwith
the polarization degree of freedomof the idler i. The resulting state takes the form

Sy ñ = ñ + ñ + ñ - ñR L1 2 1 1E i s i s
NL∣ (∣ ∣ ∣ ∣ ), wherewe take ñR i∣ ñL i(∣ ) to represent the right- (left-) handed

circular polarization state of the idler photon, and + ñ1 s∣ - ñ1 s(∣ ) the state of the corresponding signal photon
carrying+1 -1( ) unit ofOAM [14]. The experimental setup is shown infigure 2(A).We carried out
tomography on the full system-environment (OAM-polarization) space and represented the generated state
with a densitymatrix rNL.We then applied afirst swap operator11, S = ñ á + ñ áu R L L Ri i i i

NLˆ ∣ ∣ ∣ ∣ , to the state by
placing a half-wave plate in the path of the idler photon, and performed tomography on the full system-
environment space.Next, we applied anOAM-swap operator E = + ñ á- + - ñ á+u 1 1 1 1s s s s

NLˆ ∣ ∣ ∣ ∣ , by carrying
out tomography oncemore on this new state, in anOAMbasis that was themirror-image complement of that
used for tomography of the original, unswapped state. Finally, we applied both swap operators simultaneously,
and carried out a last tomographic analysis, resulting in a densitymatrix representing the twice-swapped state.
The corresponding reconstructed densitymatrices are plotted infigure 3.

We note that the similarity between any two quantum states is conventionally quantified by afidelity
computed from the direct comparison of the states’ tomographically reconstructed densitymatrices.
Unfortunately, such an analysis would be inappropriate in this case, given that quantum state tomography is a

Figure 1.Effects of OAMand SAM swaps visualized on the Poincaré (Bloch) sphere. (A)Poincaré sphere representations of the effect of
applying anOAM swap operator to the + ñ1∣ and - ñ1∣ OAMstates [15]. TheOAMswap operator uCLˆ is physically realized by a
p 2-cylindrical lensmode converter in experiment 2 (see appendix E). For both the + ñ1∣ and - ñ1∣ states, application of uCLˆ results in
a pole-to-pole rotation of theOAMstate. (B)Polarization state rotation resulting from the application of a SAM swap operator uHWPˆ ,
which, in both experiments, was realized physically by a half-wave plate. A one-to-onemapping exists between theπ-rotation induced
in theOAMstate due to the cylindrical lenses, and theπ-rotation induced in the SAMstate by the half-wave plate.

11
To be strictly correct, even themapping between the physical behavior of the half-wave plate (and that of the cylindrical lensmode

converter) and itsmathematical description should be counted as additional assumptions called upon by our investigation.
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procedure which, itself, inherently assumes the BPR to be correct. The use of such a comparison strategy would
therefore be subject to a charge of circularity [9]. Consequently, the quantum states generated heremust be
compared using an alternative figure ofmerit that does not assume the a priori correctness of the Born rule,
althoughwe nonetheless display tomographically reconstructed densitymatrices, in the interest of providing
readers with a familiar perspective on the generated states. An appropriatefigure ofmerit for our present
purpose is provided by the Bhattacharyya coefficient, a parameter that quantifies the extent of the similarity
between two general probability distributions. In our case, the probability distributions in question correspond
to the probability of a photon detection event for each of the 36 projectivemeasurementsmade to complete the
tomographic reconstruction of each of the quantum states of interest. The Bhattacharyya coefficient, P PB ,1 2( ),
associatedwith two probability distributionsP i1( ) andP i2( ), where i, in this case, denotes one of theN=36
projectivemeasurementsmade on each state, is defined as P P P P= å =B i i, i

N
1 2 1 1 2( ) ( ) ( ) . In principle,

P PB ,1 2( ) can take on any value between 0 and 1, with the former case indicatingmaximal dissimilarity between
the probability distributionsP i1( ) andP i2( ), and the latter their equality. In this investigation, we approximate
the probability distributionsP1 andP2 by the number of photon detection events registered for a particular
state, and a particular arrangement of tomographic instruments, normalized by the total number of counts

Figure 2.Experimental setups. (A)Experiment 1 setup testing Premises I–III in the nonlocal regime. An entangled photon pair is
generated by spontaneous parametric down conversion and a q-plate placed in the path of the idler. SAMandOAMswap operators,
respectively realized by a half-wave plate and coordinate change, are placed in the path of the idler and signal. OAM tomography is
executed using a spatial lightmodulator (SLM), while polarization tomography is achieved using a combination ofwaveplates and a
polarizing beam splitter (WP/PBS). (B)Experiment 2 setup, testing the validity of Premises I–III in the local regime. TheOAMand
SAMof a heralded single photon are entangled by a q-plate, followingwhich SAMandOAMswap operators, respectively consisting of
a half-wave plate and a pair of cylindrical lenses, are applied to the state. Polarization andOAM tomography are achieved using aWP/
PBS and a SLM, respectively.

Figure 3.Experimental results.Densitymatrices reconstructed from tomographic data obtained during the nonlocal test of Premises I–
III carried out in experiment 1. The real parts of the full densitymatrices rNL and reduced systemdensitymatrices Sr

NL obtained for
the original, system (OAM)-swapped, environment (SAM)-swapped and twice-swapped states are displayed, alongwith
‘wavefunction’ representations of the states, showing the entanglement between theOAMand SAMdegrees of freedom. The original
and twice-swapped full densitymatrices are found to be highly similar, in agreement with Premise I, while the reduced density
matrices are found to be largely indistinguishable, regardless of the application of either or both swapping operators, in agreement
with Premise II. The imaginary parts of the densitymatrices plotted in thefigure are displayed in the appendixD.
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registered throughout the experiment for that particular state (hence, we determine the frequencies of the
associated detection events). The correspondence between the original state Sy ñE

NL∣ and the twice-swapped state

E S Sy ñU U E
NL NL NLˆ ˆ ∣ ,asmeasured by the corresponding Premise I Bhattacharyya coefficient was found to be

P PS = B , 0.9976 0.0058o EI
NL ( ) , wherePo andPSE respectively denote the probability distributions for the

original and twice-swapped states. This result demonstrates that the unswapped and twice-swapped states show
strongly statistically similar behavior, and suggests that envariant transformations can be physically realized for
nonlocally entangled states, in agreementwith Premise I.

In addition to experimentally generating the full densitymatrices rNL, we tested Premise II for this
nonlocally entangled state by directlymeasuring the system alone in order to produce the system (the signal
photonOAM)densitymatrix, withoutmonitoring the environment (the idler photon polarization). In order for
Premise II to hold, the statistics of the systemmust be invariant under application of either or both of the

swapping operators SU
NLˆ and EU

NLˆ to the overall state. As can be discerned from the reduced densitymatrices
shown infigure 3, the state of the system, as represented by the density operator

S
rNL, was not found to change

appreciably upon application of either swap operator, norwas it affected by the double-swap transformation, in
complete agreement with Premise II. Respective Premise II Bhattacharyya coefficients of

P PS = B , 0.9984 0.0083oII
NL ( ) , P PE = B , 0.9998 0.0082oII

NL ( ) and P PS = B , 0.9989 0.0082o EII
NL ( )

were determined by comparing the original/system-swapped, original/environment-swapped and original/
twice-swapped tomography data. If the Born rule is not assumed, this result is somewhat remarkable, no
analogous circumstance being possible classically; in the classical case, composite physical systems are
constructed from theCartesian product of their subsystems, so that nontrivial operations carried out on one
subsystem can never be reversed by acting on another [10]when the overall state is known (‘pure’). Indeed, it is
precisely the fact thatHilbert spaces of quantum systems combine by tensor product that allows for
entanglement and enables the restoration of the original system/environment state via the counterswap
operation.

In order to test Premise III, it is necessary to establish a link between the statistics of the system and
environment.We did so bymeasuring the probability of obtaining a polarization state ñR s∣ ñL s(∣ ), given that the
correspondingOAMstate + ñ1 i∣ - ñ1 i(∣ ) is selected.We found that, for the unswapped state, the ñR∣ polarization
state was detected alongwith the + ñ1∣ and - ñ1∣ OAMstates with respective frequencies of 99.3±0.3%, and
0.7±0.3%.Conversely, the ñL∣ polarization state was accompanied by the - ñ1∣ and + ñ1∣ OAMstates with
respective frequencies of 98.5±0.3% and 1.5±0.4%. Both results suggest Premise III to be valid, when
possible systematic errors, includingmanufacturing defects in the q-plate, are considered.

At this stage, a subtle, but important point should bemade regarding the BPRderivation introduced above:
as was observed at the outset of the initial BPR derivation, Premise II could be understood to follow directly from
causality. Indeed, if swapping environment states produced a change that could be detected by a system-only
observer, violations of causality would ensuewhen the system and environment were spacelike separated.
However, an appeal to relativistic causality is certainly undesirable if onewishes to derive the Born rule from
purely quantummechanical arguments, as is the case here. Premise II is, in fact, amore general statement that
should, in principle, apply even to locally entangled degrees of freedom, otherwise known as local nonseparable
states12.Motivated by this observation, we test the local versions of Premises I–III in a second experiment, which
decouples the constraint of envariance from that of causality. In experiment 2, we used a heralded single-photon
source to generate a single-photon nonseparable state of the form Sy ñ = ñ + ñ + ñ - ñR L1 2 1 1E

L∣ (∣ ∣ ∣ ∣ ), in
which the system is identifiedwith the photon’s polarization degree of freedom, and the environment with its
OAMdegree of freedom. The corresponding experimental setup is shown infigure 2(B). Tomographic analyses
similar to those performed during experiment 1were carried out, in order to characterize the original,
polarization-swapped (system-swapped), OAM-swapped (environment-swapped), and twice-swapped states,
which are represented by the densitymatrices infigure 4. The polarization-swapped state was generated by
applying a unitary operator S = ñá + ñáu R L L RLˆ ∣ ∣ ∣ ∣ to the original state, using a half-wave plate, while theOAM-
swapped state was obtained by applying a unitary operator E = + ñá- + - ñá+u 1 1 1 1Lˆ ∣ ∣ ∣ ∣ to the state, using a
p 2-cylindrical lensmode converter [16], as already discussed infigure 1. The correspondence between the
densitymatrices obtained for the original and twice-swapped states, alongwith the associated Premise I
Bhachattaryya coefficient P PS = B , 0.9915 0.0041L

o EI ( ) suggests that Premise I is satisfied even in the case of
mutually local unitary transformations, towithin 0.85%.

Next, we tested Premise II for the locally entangled state Sy ñE
L∣ . As before, Premise II requires that no

detectable changes occur in the system (polarization) spacewhen either or both of the transformations SUL̂ and

EUL̂ are applied to the state. In some sense, this is amore surprising consequence of envariance than that

12
Wenote that the distinction between entanglement and nonseparability is generally emphasized bymanywho view entanglement as

being a nonlocal phenomenon [17], by definition.We avoid highlighting this distinction, in order to draw a clearer parallel between the
mathematical description of the nonlocal entangled state of experiment 1, and the ‘local entangled’ state of experiment 2.
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demonstrated in experiment 1: here, a swap executed in one degree of freedomof a particular photonmust not
affect another degree of freedompossessed by that same photon.No appeal to relativistic causality can explain
this phenomenon; rather, it is best understoodwith direct reference to envariance13.Wefind once again that the
premises called upon by the BPRderivation discussed here are indeed verified in practice, the once-swapped and
twice-swapped states showing no detectable disagreement, as evidenced by a comparison of the reduced density
matrices bywhich they are represented infigure 4, and the corresponding Premise II Bhattacharyya coefficients

P PS = B , 0.9995 0.0024L
oII ( ) , P PE = B , 0.9998 0.0021L

oII ( ) and P PS = B , 0.9994 0.0024L
o EII ( ) .

Finally, we also tested the experimental validity of Premise III for this local state.We found that, for the
unswapped state, the probabilities of registering a polarization state ñR∣ , given respectiveOAM states + ñ1∣ and
- ñ1∣ were 98.1±0.3% and 1.9±0.3%. In turn, we found that the ñL∣ polarization state was accompanied by
the - ñ1∣ and + ñ1∣ OAMstates with respective frequencies of 98.4±0.3% and 1.6±0.3%, showing close
correspondencewith Premise III.We closewith a brief comment to place this work in context, particularly with
respect to the results presented in the investigation [9].While reference [9] and the present study both reported
an experimental investigation of envariance, the two projects differed considerably in scope and aim. In
particular [9], presented a rigorous investigation of whatwe here have referred to as Premise I, in the case of a
nonlocal quantum state. This commonality notwithstanding, the present work is the first to report an
experimental test of Premises II and III, and the first to explore the envariance argument experimentally in a
purely local system. Aswe have discussed, this latter point is important: whilemany of the effects of envariance
can be explained by appeals to causality for nonlocal systems, envariance can be fully distinguished from locality
only if one carries out experiments on a purely local state of the formused in the present work.

4. Conclusion

In summary, we have demonstrated experimentally the validity of three key premises involved in a decoherence-
motivated derivation of the BPR. Specifically, we have shown,without appealing to the BPR, that an experiment
sensitive to one part of a bipartite, entangled quantum system in a particular state Sy ñE∣ cannot detect a ‘state-
swapping’ action carried out over an entangled but unmonitored degree of freedomof that same state.More
remarkably still, we have demonstrated that this same experiment cannot detect a swap carried out on the very
degree of freedom beingmonitored, for the state under consideration.Wenote that, in the absence of the Born rule
postulate, such a finding is nontrivial, and highly counterintuitive.We have also extended a previous
demonstration of the symmetry of envariance to a domain inwhich an appeal to causality cannot bemade to
explain experimental observations, and have thereby shown themore general validity of this principle, as
invoked in the original BPR argument. Our experiment can therefore be understood to establish a lower bound
on the extent towhich nature observes the BPR. This lower bound is set by the range of uncertainties associated

Figure 4.Experimental results.Reconstructed densitymatrices obtained fromquantum state tomography carried out during the local
test of Premises I–III carried out in experiment 2. The real parts of the full and reduced densitymatrices, rL and Sr

L , obtained for the
original, system (SAM)-swapped, environment (OAM)-swapped and twice-swapped states are displayed, alongwith ‘wavefunction’
representations of the states. The original and twice-swapped full densitymatrices are found to be highly similar, in agreement with
Premise I, while the reduced densitymatrices are found to be largely indistinguishable, regardless of the application of either or both
swapping operators, in agreementwith Premise II. The imaginary parts of the densitymatrices plotted in thefigure are displayed in the
appendixD.

13
Strictly speaking, envariance can be justified under these conditions with an appeal to the principle of quantum contextuality. Insofar as

this principle does not depend uponnotions of causality, envariancemay be viewed as a generalization of locality and contextuality, whose
validity has been demonstrated in its ‘contextual’ and ‘local’ forms by experiments 1 and 2, respectively.
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with the Bhattacharyya coefficients and outcome frequencies obtained in our experiments. Consequently, we
have provided strong empirical support for the envariance-based derivation of the Born rule, and have taken an
important step toward explaining the emergence of classical reality from themathematical formalismof
quantummechanics.
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AppendixA. Generalization to arbitrary coefficients:

Inwhat follows, we present a generalization of the Born rule derivation discussed in themain text, to the case of
arbitrary coefficients in the state Schmidt representation. Ours is a simplified version of this generalization
[8, 10, 18], which followed the original BPR argument. In this approach, we consider an ‘imbalanced’ state of the
form

y e eñ = ñ ñ + ñ ñs s2 3 , A.10 0 2 2∣ ( ∣ ∣ ∣ ∣ ) ( )

generated as a result of a pre-measurement by the environment on the system, where e e dá ñ = á ñ =s si j i j i j,∣ ∣ , and
the system and environment are respectively spanned by the orthonormal kets ñ ñs s,1 2{∣ ∣ }and e e eñ ñ ñ, ,0 1 2{∣ ∣ ∣ }.
We note at the outset of this derivation that the state yñ∣ is clearly not envariant under a swap of its system and
environment state labels, precisely due to the presence of the 2 coefficient present in equation (E.4). The
environmentmust therefore be assumed to possess at least a dimensionality of three, butwe note that this
requirement is satisfied in the vastmajority of real-world cases, inwhich the environment possesses a number of
degrees of freedom far greater than that possessed by the system.We are then justified in defining a newpair of
environment kets such that e eñ = ñ  ñ 20 1∣ (∣ ∣ ) . Under these conditions, we can rewrite the original state as
follows:

y eñ = ñ +ñ + ñ -ñ + ñ ñs s s2 2 3 . A.20 0 2 2∣ ( (∣ ∣ ∣ ∣ ) ∣ ∣ ) ( )
The 2 terms cancel, whencewefind that

y eñ = ñ +ñ + ñ -ñ + ñ ñs s s 3 . A.30 0 2 2∣ (∣ ∣ ∣ ∣ ∣ ∣ ) ( )

The present strategy, whichmight be referred to as a ‘fine-graining’ of the state yñ∣ , has allowed us towrite a
representation of yñ∣ inwhich the state is expressed as a sumof equally weighted kets, at the expense of enlarging
theHilbert space over which it is defined. At this point, itmay be tempting to invoke the envariance-based
argument presented in themain text to argue for the Born rule in amore general form.However, this strategy is
ill-fated, as we nowwill show. If, for example, we introduce the necessarily nonunitary swapping operator pair

S = ñá + ñáO s s s s0 2 2 0
ˆ ∣ ∣ ∣ ∣and E e e= +ñá + ñá+O 2 2

ˆ ∣ ∣ ∣ ∣, with the aimof establishing the equiprobability of the
ñ + ñs0∣ ∣ and eñ ñs2 2∣ ∣ states, wefind that

E S y e yñ = ñ ñ + ñ +ñ ¹ ñO O s s 3 , A.42 2 0
ˆ ˆ ∣ (∣ ∣ ∣ ∣ ) ∣ ( )

so that arguments based upon envariancemay not be invoked. However, this difficulty is overcome by the
introduction of a second environment, spanned by the orthonormal states ñ ñ ñ+ -e e e, , 2{∣ ∣ ∣ }, which ismade to
interact with the first environment, resulting in a second pre-measurement interaction of the form

y e

e y

ñ = ñ +ñ + ñ -ñ + ñ ñ ñ

 ñ + ñ ñ + ñ -ñ ñ + ñ ñ ñ = ¢ñ
+

+ -

s s s e

s e s e s e

1 3

3 . A.5

0 0 2 2

0 0 2 2 2

∣ (∣ ∣ ∣ ∣ ∣ ∣ )∣
(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ∣ ( )

Weare now in a position to set the scene for the standard envariance argument in this context.We begin by
defining the composite kets ñ + ñ = ñ+s s0 0∣ ∣ ∣ , ñ - ñ = ñ-s s0 0∣ ∣ ∣ and eñ ñ = ñs s2 2 2

2∣ ∣ ∣ , so that wemay nowwrite

y¢ñ = ñ ñ + ñ ñ + ñ ñ+
+

-
-s e s e s e1 3 . A.60 0 2

2
2∣ (∣ ∣ ∣ ∣ ∣ ∣ ) ( )

Wenext define the unitary swapping operators

S = ñá + ñá + ñá
+ - + - - +U s s s s s s A.7E

,
0 0 0 0 2

2
2
2ˆ ∣ ∣ ∣ ∣ ∣ ∣ ( )
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= ñá + ñá + ñá
+ -

+ - - +U e e e e e e A.8E
,

2 2ˆ ∣ ∣ ∣ ∣ ∣ ∣ ( )

S = ñá + ñá + ñá
- + + - -U s s s s s s A.9E

,2
0 0 0 2

2
2
2

0
ˆ ∣ ∣ ∣ ∣ ∣ ∣ ( )

= ñá + ñá + ñá
-

+ + - -U e e e e e e . A.10E
,2

2 2ˆ ∣ ∣ ∣ ∣ ∣ ∣ ( )

Wenote that these operators satisfy the envariance relations S y y¢ñ = ¢ñ
+ - + -

U UE E
, ,ˆ ˆ ∣ ∣ and S y y¢ñ = ¢ñ

- -
U UE E

,2 ,2ˆ ˆ ∣ ∣ . As
a result, one concludes from the standard envariance argument that
P P Py y yñ ¢ñ = ñ ¢ñ = ñ ¢ñ+ -e e e2(∣ ∣∣ ) (∣ ∣∣ ) (∣ ∣∣ ), and by Premise III, thatP Py yñ ¢ñ = ñ ¢ñ =s s2 2 30 2(∣ ∣∣ ) (∣ ∣∣ ) , as
expected from the Born rule. A fully general treatment of the case of arbitrary coefficients was discussed in the
original Born rule derivation, as well as in subsequentwork in the field [8, 19].

Appendix B. Additional remarks onPremises I–III:

In the interest of clarity, we now turn to a brief discussion of terminology. Throughout themain text, we refer to
a set of quantummechanical principles (‘Premises I–III’) fromwhich the BPR can be derived.Wewish to
emphasize herewhat has already been argued in the text: these premises should not be understood to represent
assumptions thatmust be added to the set of basic ‘no-collapse’ axioms of quantummechanics. Instead, these are
propositions regarding the behavior of quantum systems thatmay be derived from standard foundational
axioms uponwhich quantum theory is generally constructed, absent the Born rule postulate. The premises arise
from a set of assumptions about the quantumUniverse (the so-called ‘quantum credo’), which are already
contained as subsets of the collection of foundational axioms required to formulate no-collapse quantum
mechanics [10, 18]:

(i) Quantum states correspond to vectors in aHilbert space.

(ii) Quantum states undergo unitary evolution under the Schrödinger equation,  y y¶ ñ = ñHi t∣ ˆ ∣ , where Ĥ is
Hermitian.

(iii) Composite quantum states can be expressed as superpositions of the form eå ñ ñc si j i j i j, , ∣ ∣ .

(iv) An immediately repeatedmeasurement will yield the same outcome as its precedingmeasurement.

Our experimental verification therefore serves a very specific purpose: to show that the physical world
indeed abides by the quantummathematics that lead one to the BPRderivation presented in themain text. It is
therefore the gap between themathematical and physical descriptions of theUniverse that we have sought to
bridge.

AppendixC.Untested ‘candidate’ premises:

1. The eigenvalue-eigenstate link:Onemight be led towonder whether the set of three premises discussed in
themain text is, indeed, exhaustive. Specifically, onemight be inclined to suggest that a fourth premise, that of
the ‘eigenvalue-eigenstate link’ (EEL), is also required, at least implicitly, by the BPRderivation presented in the
text. The EEL postulates that a particularmeasurement outcome indicates the presence of the corresponding
quantum state. According to the EEL, a photon detection event registered for a particular arrangement of the
spatial lightmodulator andwaveplates indicates the presence of a photonwith the corresponding polarization
andOAM.Despite its apparent relevance to the envariance-based BPRderivation, the eigenvalue-eigenstate link
is, in fact, already captured as a special case of Premise III. In particular, consider the following pre-measurement
interaction between a system space, spanned by { ñ ñs s,1 2∣ ∣ }, and an ancillary space, spanned by { ñ ña a,1 2∣ ∣ },
where dá ñ = á ñ =s s a ai j i j ij∣ ∣ :

ñ + ñ ñ  ñ ñ + ñ ñs s a s a s a
1

2

1

2
. C.11 2 1 1 1 2 2(∣ ∣ )∣ (∣ ∣ ∣ ∣ ) ( )

Wenote that the correlation established between system and ancilla states in equation (C.1) can be interpreted as
having imprinted upon the ancilla kets a de facto record of the corresponding state of the system. This is precisely
consistent with the ancilla’s having perceived themeasurement outcome associatedwith the particular system
state withwhich it is partnered, and therefore with its having ‘recorded’ the pre-measurement. One consequence
of this interaction is therefore the apparent emergence of an ‘eigenvalue-eigenstate link’, so that the connection
betweenmeasurement outcomes andmeasured states need not be postulated separately fromPremise III.

2. Null Schmidt coefficients:A second candidate ‘untested premise’ so appeals to the intuition that it is
easily overlooked.When represented in its Schmidt form, y eñ = å ñ ñc si i i i∣ ∣ ∣ , a general bipartite quantum state
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contains kets eñ ñsk k∣ ∣ for which the associated coefficients ck are equal to zero. Indeed, this is precisely the case for
the state displayed in equation (1), where, we have = =c c 1 21 2 , ck=0 for k 3. A careful reading of the
derivation presented in themain text will reveal an additional tacit premise required by the BPR argument: states
with null Schmidt coefficients were taken to be physically inadmissible, i.e. ck=0was taken to indicate that the
state ñsk∣ could never be observed uponmeasurement. This premise was called upon implicitly when it was
suggested that the Born rule was satisfied by the relationP PS Sy yñ ñ = ñ ñs sE E1 2(∣ ∣∣ ) (∣ ∣∣ ), as it leads to the
conclusion thatP PS Sy yñ ñ + ñ ñ =s s 1E E1 2(∣ ∣∣ ) (∣ ∣∣ ) , fromwhich the BPR follows. But to take the case ck=0 to
indicate the impossibility of observing outcome ñsk∣ is to assume, if only to a very limited degree, the Born rule
a priori. Should one conclude, then, that an additional premise ought to be tested in order to fully support the
BPRderivation provided in the text?

Fortunately, the physical inadmissibility of states with null Schmidt coefficients has already been shown [21]
to follow from the premises already tested during this experiment. In particular, arguments on envariance can be
used to demonstrate that any envariantly swappable pair of states in the Schmidt representation of a bipartite
quantum statemust be equiprobable. For instance, if there existN terms in the Schmidt decomposition of a state
yñ∣ for which the associated prefactors a=ck , with = ¼k N1, 2, , , onefinds that

å

å

y e

a e e e e

ñ = ñ ñ

= ñ ñ + ñ ñ+ + ñ ñ + ñ ñ
= +

c s

s s s c s... . C.2
i

i i i

N N
i N

i i i1 1 2 2
1

∣ ∣ ∣

(∣ ∣ ∣ ∣ ∣ ∣ ) ∣ ∣ ( )

It follows from envariance arguments thatP P Py y yñ ñ = ñ ñ = = ñ ñ =s s s p... N1 2(∣ ∣∣ ) (∣ ∣∣ ) (∣ ∣∣ ) , so that
P=Np is the probability of obtaining any one of theN equally weighted states outside the sum in
equation (C.2). For the special case a = 0, we find that terms outside the sum in equation (C.2) can be
combinedwith impunity: for example, e e eñ ñ + ñ ñ = ñ ñ¢ ¢s s s0 0N N1 1 1 1(∣ ∣ ∣ ∣ ) ∣ ∣ . If the state kets labelled 1 andN are
combined in this way, one obtains

åy e e e eñ = ñ ñ + ñ ñ+ + ñ ñ + ñ ñ¢ ¢ - -
= +

s s s c s0 ... . C.3N N
i N

i i i1 1 2 2 1 1
1

∣ (∣ ∣ ∣ ∣ ∣ ∣ ) ∣ ∣ ( )

The combination of eñ ñs1 1∣ ∣ and eñ ñsN N∣ ∣ that leads to equation (C.3) cannot have any physical consequences,
however, as itmerely involves amathematical rearrangement of the state yñ∣ . Consequently, the total probability
associatedwith the kets outside the summationmust still be equal to the analogous probability in equation (C.3),
but there are nowonly -N 1 such terms, all of whichmust be still be assigned an equal probability based upon
envariance arguments.Hence, wemust nowhaveP P Py y yñ ñ = ñ ñ = = ñ ñ =¢ -s s s p... N1 2 1(∣ ∣∣ ) (∣ ∣∣ ) (∣ ∣∣ ) , but
= -P p N 1( ). By equating the total probabilitiesP assigned to the states outside the sums in equations (C.2)

and (C.3), onefinds that = -pN p N 1( ), which can be satisfied only for p=0.

AppendixD. Additional experimental data:

In addition to the real part of the densitymatrices plotted infigures 3 and 4, the tomographic data obtained
throughout the experiment can, of course, be used to generate the imaginary parts of these samematrices. The
imaginary densitymatrices corresponding to the data plotted infigures 3 and 4 are plotted infigures B1 andC1 ,
respectively.We note that the Bhattacharyya coefficients presented in themain text accounted for all raw
tomographic data, and therefore reflect the combined information content required to produce both the real
and imaginary densitymatrices obtained in experiments 1 and 2.

Further, although afidelity-based comparison of the densitymatrices displayed infigures 3, 4, B1 andC1 is
inappropriate for the purpose of verifying Premises I–III, such an analysismay nonetheless be of interest to
readers wishing for amore familiar comparisonmetric bywhich to assess the tomographic data. In experiment

1, we found the relative fidelity of the original state Sy ñE
NL∣ and twice-swapped state E S Sy ñU U E

NL NL NLˆ ˆ ∣ to be
0.978±0.011, while in experiment 2, the analogous fidelity of the original state Sy ñE

L∣ and twice-swapped state

E S Sy ñU U
L L

E
Lˆ ˆ ∣ was found to be 0.940±0.011.

We also obtained relative fidelities of 0.9918±0.0028, 0.9983±0.0017 and 0.9949±0.0023, respectively
for the reduced systemdensitymatrices corresponding to the original/system-swapped, original/environment-
swapped and original/twice-swapped cases in experiment 1. In experiment 2, the original/system-swapped,
original/environment-swapped and original/twice-swapped densitymatrices were found to exhibit relative
fidelities of 0.9998±0.0001, 0.9951±0.0010 and 0.9975±0.0007.

Finally, we determined the purities
S

r=p Tr 2[ ]associatedwith the reduced systemdensitymatrices Sr in
both experiments. These quantities provide a valuablemeasure of the extent of the ‘classicality’ of the system, a
purity of 1/2 in this case indicating a perfectlymixed state exhibiting no coherence effects. The respective
purities of the systemwere found to be 0.5100±0.0029, 0.5145±0.0036, 0.5145±0.0035 and
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0.5010±0.0029 for the original, system-swapped, environment-swapped and twice-swapped reduced density
matrices in experiment 1, and 0.5002±0.0001, 0.5003±0.0001, 0.5031±0.0005 and 0.5017±0.0004 for
the original, system-swapped, environment-swapped and twice-swapped reduced densitymatrices in
experiment 2.

Appendix E. experimental details:

Experiment 1:weuse a 355 nm150mWquasi-continuous-wave laser to pump aType Iβ-bariumborate (BBO)
nonlinear crystal, phase-matched for spontaneous parametric down conversion (SPDC). The signal and idler
photons are split into two separate arms at a nonpolarizing beams splitter. In one arm,we place a photonic q-
plate, alongwith a polarization tomography setup consisting of a quarter- and half-wave plate followed by a
polarizing beam splitter (PBM). As needed, a polarization swapping operator, consisting of a half-wave plate, is
placed between the q-plate and the polarization tomography setup. In the second arm,we place a spatial light
modulator (SLM) in the path of the beam, and use it to carry outOAM tomography, bymeans of a phase-
flattening algorithm (see tomography). TheOAMswap operator is realized by carrying out tomography in a
mirror-image basis to that used for tomography on the unswapped state. This is effectively equivalent to adding a
mirror in the second arm,which corresponds to a substitution of + ñ1∣ for - ñ1∣ , and vice-versa, and hence, an

Figure B1. Imaginary densitymatrices obtained from experiment 1 tomographic data. Imaginary parts of the reconstructed density
matrices obtained fromquantum state tomography carried out during the nonlocal test of Premises I–III carried out in experiment 1.
The imaginary parts of the full and reduced densitymatrices, rL and Sr

L , obtained for the original, system (SAM)-swapped,
environment (OAM)-swapped and twice-swapped states are displayed, alongwithwavefunction representations of the states. The
original and twice-swapped full densitymatrices are found to be highly similar, in agreement with Premise I, while the reduced density
matrices are found to be largely indistinguishable, regardless of the application of either or both swapping operators, in agreement
with Premise II.

FigureC1. Imaginary densitymatrices obtained from experiment 2 tomographic data. Imaginary parts of the reconstructed density
matrices obtained fromquantum state tomography carried out during the local test of Premises I–III carried out in experiment 2. The
imaginary parts of the full and reduced densitymatrices, rL and Sr

L , obtained for the original, system (SAM)-swapped, environment
(OAM)-swapped and twice-swapped states are displayed, alongwithwavefunction representations of the states. The original and
twice-swapped full densitymatrices are found to be highly similar, in agreementwith Premise I, while the reduced densitymatrices are
found to be largely indistinguishable, regardless of the application of either or both swapping operators, in agreement with Premise II.
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OAMswap of the required form,without affecting either photon’s polarization state. By post-selecting only on
the phase-flattened component of the beams emerging from the first and second arms, we produce the required
state. The set of 36 tomographicmeasurementsmade on the combinedOAM-polarization space can be used to
reconstruct the full densitymatrices displayed in the text.

Reduced tomography over the system (OAM) spacewas achieved by removing the polarization tomography
setup from thefirst arm, therefore rendering themeasurement insensitive to the polarization of the signal
photon. The sixmeasurements required forOAM tomography are carried out by displaying six different
diffraction patterns on the SLM, and registering the corresponding coincidence counts obtained from the pair of
single-photon detectors at the output of the setup.

The preparation and post-selection involved inmeasuring the unswapped state proceeds as follows:

(1)After SPDC, therewill exist OAM-entangled photon pairs whose joint states are given by

+ ñ - ñ + - ñ + ñ ñ ñH H1 2 1 1 1 1 . E.1s i s i s i(∣ ∣ ∣ ∣ )∣ ∣ ( )

(2)When tuned, the q-plate, for which =q 1 2 converts a polarization state ñR∣ ( ñL∣ ) into a state ñL∣ ( ñR∣ ), while
simultaneously decreasing (increasing) theOAMby one unit. Hence, following the q-plate, we are left with a
state of the form

ñ - ñ ñ + ñ + ñ ñ
+ + ñ - ñ ñ + - ñ + ñ ñ ñ

L R

L R H

1 2 0 1 0 1

2 1 2 1 . E.2
s i s s i s

s i s s i s i

(∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ )∣ ( )

(3)By post-selecting on the signal ñ0 s∣ state, and ignoring the idler polarization, one obtains a state in which the
OAMof the idler is entangledwith the polarization of the signal photon:

- ñ ñ + + ñ ñL R1 2 1 1 , E.3i s i s(∣ ∣ ∣ ∣ ) ( )

as required.

Experiment 2:we use a 355 nm150 mWquasi-continuous-wave laser to pump a type Iβ-bariumborate
(BBO)nonlinear crystal, phase-matched for spontaneous parametric down conversion (SPDC). The idler
photon is used to herald the arrival of the signal, and the horizontally-polarized signal photon is passed through
a photonic q-plate, for which =q 1 2. Following the q-plate, the signal photon ismade to pass through a
p 2-cylindrical lensmode converter, which swaps the photon’sOAMstate, if desired. If a polarization swap
operator is required, a half-wave plate can be placed in the beampath as well, but in either case, the beam is
subsequently transmitted through a polarization tomography setup, consisting of a quarter-wave plate, half-
wave plate, and PBS.Upon emerging from the PBS, the beam reaches a SLM,which can be used forOAM
tomography, and coupled to a single-mode optical fiber (see: tomography). The set of 36 tomographic
measurementsmade on the combinedOAM-polarization space can be used to reconstruct the full density
matrices displayed in the text.

In order to carry out reduced tomography over the system (polarization) space alone, we coupled the beam
emerging from the polarization tomography setup directly to amultimode optical fiber, thereby circumventing
the SLM, and tracing over theOAMdegree of freedom. Themultimode fiber effectively serves as a bucket
detector in this context, as it couples the + ñ1∣ and - ñ1∣ OAMstates with equal, nonzero, efficiency.

The preparation and post-selection involved inmeasuring the unswapped state proceeds as follows:

(1)The linearly polarized single-photon state entering the experimental apparatus takes the form ñ ñH 0∣ ∣ .

(2) Following the q-plate, the single photon state becomes

ñ + ñ + ñ - ñR L1 2 1 1 , E.4(∣ ∣ ∣ ∣ ) ( )

as desired.
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Appendix F. Tomography:

Experiments 1 and 2 require that tomography be carried out, once on the full system-environment space of the
states Sy ñE

NL∣ and Sy ñE
L∣ , and again on the system alone for each of these states. In both experiments, we consider

only a joint SAM–OAMspace spanned by the set + ñ - ñ + ñ - ñR R L L, 1 , , 1 , , 1 , , 1{∣ ∣ ∣ ∣ }, which subspace is
isomorphous to the two-photon polarization space, and hence, can be represented by the SU(2)×SU(2) group.
The Pauli and identitymatrices, when combined via tensor product, are generators of the SU(2)×SU(2) group,
so that the full SAM–OAMstate densitymatrices

S
r E

NL and
S

r E
L can be reconstructed by projecting the birpartite

SAM–OAMstates of interest onto the eigenvectors of s s s, ,x y zˆ ˆ ˆ and ̂. Therefore, SAM–OAMstate
reconstruction can be achieved in amanner analogous to the procedure used for two-photon polarization
tomography, as long as theOAMstates + ñ1∣ and - ñ1∣ are treated as would be one photon’s polarization degree
of freedom. Sixteen independent Stokes-like parameters are thereforemeasured, allowing the unknown state to
be unambiguously identified up to the resolution afforded by experimental conditions. In theOAMdegree of
freedom, thesemeasurements weremade bymeans of a phase-flattening algorithm,which projects the
unknown state onto SLMs displaying one of six distinct phase patterns [20]. Any phase-flattened light emerging
from the SLM’sfirst diffracted order can be coupled to an optical fiber. Tomography carried out on the SAM
degree of freedom is effected by using a standard polarization tomography configuration consisting of a quarter-
and half-wave plate, followed by a PBM. In concert, these can be used to project an unknown polarization state
onto any one of the six polarization states required for SAM tomography.
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